pfsspy is a python package for carrying out Potential Field Source Surface modelling. For more information on the actually PFSS calculation see this document.
Note
pfsspy is a very new package, so elements of the API are liable to change with the first few releases. If you find any bugs or have any suggestions for improvement, please raise an issue here: https://github.com/dstansby/pfsspy/issues
Improving performance¶
numba¶
pfsspy automatically detects an installation of numba, which compiles some of the numerical code to speed up pfss calculations. To enable this simply install numba and use pfsspy as normal.
Citing¶
If you use pfsspy in work that results in publication, please cite the archived code at both
Citation details can be found at the lower right hand of each web page.
Code reference¶
For the main user-facing code and a changelog see
pfsspy Package¶
Functions¶
|
Create a Carrington WCS header for a Cylindrical Equal Area (CEA) projection. |
|
Load a saved output file. |
|
Compute PFSS model. |
pfsspy.fieldline Module¶
Classes¶
|
A set of closed field lines. |
|
A single magnetic field line. |
|
A collection of |
|
A set of open field lines. |
Class Inheritance Diagram¶

pfsspy.tracing Module¶
Classes¶
|
Tracer using Fortran code. |
|
Tracer using native python code. |
Abstract base class for a streamline tracer. |
Changelog¶
0.5.1¶
Fixed some calculations in
pfsspy.carr_cea_wcs_header
, and clarified in the docstring that the input shape must be in[nlon, nlat]
order.Added validation to
pfsspy.Input
to check that the inputted map covers the whole solar surface.Removed ghost cells from
pfsspy.Output.bc
. This changes the shape of the returned arrays by one along some axes.Corrected the shape of
pfsspy.Output.bg
in the docstring.Added an example showing how to load ADAPT ensemble maps into a
CompositeMap
Sped up field line expansion factor calculations.
0.5.0¶
Changes to outputted maps¶
This release largely sees a transition to leveraging Sunpy Map objects. As such, the following changes have been made:
pfsspy.Input
now must take a sunpy.map.GenericMap
as an
input boundary condition (as opposed to a numpy array). To convert a numpy array
to a GenericMap
, the helper function
pfsspy.carr_cea_wcs_header()
can be used:
map_date = datetime(...)
br = np.array(...)
header = pfsspy.carr_cea_wcs_header(map_date, br.shape)
m = sunpy.map.Map((br, header))
pfss_input = pfsspy.Input(m, ...)
pfsspy.Output.source_surface_br
now returns a GenericMap
instead of an array. To get the data array use source_surface_br.data
.
The new pfsspy.Output.source_surface_pils
returns the coordinates of
the polarity inversion lines on the source surface.
In favour of directly using the plotting functionality built into SunPy, the following plotting functionality has been removed:
pfsspy.Input.plot_input
. InsteadInput
has a newmap
property, which returns a SunPy map, which can easily be plotted usingsunpy.map.GenericMap.plot
.pfsspy.Output.plot_source_surface
. A map of \(B_{r}\) on the source surface can now be obtained usingpfsspy.Output.source_surface_br
, which again returns a SunPy map.pfsspy.Output.plot_pil
. The coordinates of the polarity inversion lines on the source surface can now be obtained usingpfsspy.Output.source_surface_pils
, which can then be plotted usingax.plot_coord(pil[0])
etc. See the examples section for an example.
Specifying tracing seeds¶
In order to make specifying seeds easier, they must now be a
SkyCoord
object. The coordinates are internally
transformed to the Carrington frame of the PFSS solution, and then traced.
This should make specifying coordinates easier, as lon/lat/r coordinates can be created using:
seeds = astropy.coordinates.SkyCoord(lon, lat, r, frame=output.coordinate_frame)
To convert from the old x, y, z array used for seeds, do:
r, lat, lon = pfsspy.coords.cart2sph
r = r * astropy.constants.R_sun
lat = (lat - np.pi / 2) * u.rad
lon = lon * u.rad
seeds = astropy.coordinates.SkyCoord(lon, lat, r, frame=output.coordinate_frame)
Note that the latitude must be in the range \([-\pi/2, \pi/2]\).
GONG and ADAPT map sources¶
pfsspy now comes with built in sunpy
map sources for GONG and ADAPT synoptic
maps, which automatically fix some non-compliant FITS header values. To use
these, just import pfsspy
and load the .FITS files as normal with sunpy.
Tracing seeds¶
pfsspy.tracing.Tracer
no longer has a transform_seeds
helper method, which
has been replaced by coords_to_xyz
and
xyz_to_coords
. These new methods convert
between SkyCoord
objects, and Cartesian xyz coordinates
of the internal magnetic field grid.
0.4.3¶
Improved the error thrown when trying to use :class`pfsspy.tracing.FotranTracer` without the
streamtracer
module installed.Fixed some layout issues in the documentation.
0.4.2¶
Fix a bug where :class`pfsspy.tracing.FotranTracer` would overwrite the magnetic field values in an
Output
each time it was used.
0.4.1¶
Reduced the default step size for the
FortranTracer
from 0.1 to 0.01 to give more resolved field lines by default.
0.4.0¶
New fortran field line tracer¶
pfsspy.tracing
contains a new tracer,
FortranTracer
. This requires and uses the
streamtracer package
which does streamline tracing rapidly in python-wrapped
fortran code. For large numbers of field lines this results in an ~50x
speedup compared to the PythonTracer
.
Changing existing code to use the new tracer is as easy as swapping out
tracer = pfsspy.tracer.PythonTracer()
for
tracer = pfsspy.tracer.FortranTracer()
. If you notice any issues with the
new tracer, please report them at https://github.com/dstansby/pfsspy/issues.
Changes to field line objects¶
pfsspy.FieldLines
andpfsspy.FieldLine
have moved topfsspy.fieldline.FieldLines
andpfsspy.fieldline.FieldLine
.FieldLines
no longer hassource_surface_feet
andsolar_feet
properties. Instead these have moved to the newpfsspy.fieldline.OpenFieldLines
class. All the open field lines can be accessed from aFieldLines
instance using the newopen_field_lines
property.
Changes to Output
¶
pfsspy.Output.bg
is now returned as a 4D array instead of three 3D arrays. The final index now indexes the vector components; see the docstring for more information.
0.3.2¶
Fixed a bug in
pfsspy.FieldLine.is_open
, where some open field lines were incorrectly calculated to be closed.
0.3.1¶
Fixed a bug that incorrectly set closed line field polarities to -1 or 1 (instead of the correct value of zero).
FieldLine.footpoints
has been removed in favour of the newpfsspy.FieldLine.solar_footpoint
andpfsspy.FieldLine.source_surface_footpoint
. These each return a single footpoint. For a closed field line, see the API docs for further details on this.pfsspy.FieldLines
has been added, as a convenience class to store a collection of field lines. This means convenience attributes such aspfsspy.FieldLines.source_surface_feet
can be used, and their values are cached greatly speeding up repeated use.
0.3.0¶
The API for doing magnetic field tracing has changed. The new
pfsspy.tracing
module containsTracer
classes that are used to perform the tracing. Code needs to be changed from:fline = output.trace(x0)
to:
tracer = pfsspy.tracing.PythonTracer() tracer.trace(x0, output) flines = tracer.xs
Additionally
x0
can be a 2D array that contains multiple seed points to trace, taking advantage of the parallelism of some solvers.The
pfsspy.FieldLine
class no longer inherits fromSkyCoord
, but theSkyCoord
coordinates are now stored inpfsspy.FieldLine.coords
attribute.pfsspy.FieldLine.expansion_factor
now returnsnp.nan
instead ofNone
if the field line is closed.pfsspy.FieldLine
now has a~pfsspy.FieldLine.footpoints
attribute that returns the footpoint(s) of the field line.
0.2.0¶
pfsspy.Input
andpfsspy.Output
now take the optional keyword argument dtime, which stores the datetime on which the magnetic field measurements were made. This is then propagated to the obstime attribute of computed field lines, allowing them to be transformed in to coordinate systems other than Carrington frames.pfsspy.FieldLine
no longer overrrides the SkyCoord__init__
; this should not matter to users, as FieldLine objects are constructed internally by callingpfsspy.Output.trace
0.1.5¶
Output.plot_source_surface
now accepts keyword arguments that are given to Matplotlib to control the plotting of the source surface.
0.1.4¶
Added more explanatory comments to the examples
Corrected the dipole solution calculation
Added
pfsspy.coords.sph2cart()
to transform from spherical to cartesian coordinates.
0.1.3¶
pfsspy.Output.plot_pil
now accepts keyword arguments that are given to Matplotlib to control the style of the contour.pfsspy.FieldLine.expansion_factor
is now cached, and is only calculated once if accessed multiple times.
for usage examples see
pfsspy examples¶
Using pfsspy¶
Note
Click here to download the full example code
GONG helper functions¶
import os
import numpy as np
def get_gong_map():
"""
Automatically download and unzip a sample GONG synoptic map.
"""
if not os.path.exists('190310t0014gong.fits') and not os.path.exists('190310t0014gong.fits.gz'):
import urllib.request
urllib.request.urlretrieve(
'https://gong2.nso.edu/oQR/zqs/201903/mrzqs190310/mrzqs190310t0014c2215_333.fits.gz',
'190310t0014gong.fits.gz')
if not os.path.exists('190310t0014gong.fits'):
import gzip
with gzip.open('190310t0014gong.fits.gz', 'rb') as f:
with open('190310t0014gong.fits', 'wb') as g:
g.write(f.read())
return '190310t0014gong.fits'
Total running time of the script: ( 0 minutes 0.000 seconds)
Note
Click here to download the full example code
Open/closed field map¶
Creating an open/closed field map on the solar surface.
First, import required modules
import os
import astropy.units as u
import astropy.constants as const
from astropy.coordinates import SkyCoord
import matplotlib.pyplot as plt
import matplotlib.colors as mcolor
import numpy as np
import sunpy.map
import pfsspy
from pfsspy import coords
from pfsspy import tracing
from gong_helpers import get_gong_map
Load a GONG magnetic field map. If ‘gong.fits’ is present in the current directory, just use that, otherwise download a sample GONG map.
gong_fname = get_gong_map()
We can now use SunPy to load the GONG fits file, and extract the magnetic field data.
The mean is subtracted to enforce div(B) = 0 on the solar surface: n.b. it is not obvious this is the correct way to do this, so use the following lines at your own risk!
gong_map = sunpy.map.Map(gong_fname)
# Remove the mean
gong_map = sunpy.map.Map(gong_map.data - np.mean(gong_map.data), gong_map.meta)
Set the model parameters
nrho = 60
rss = 2.5
Construct the input, and calculate the output solution
input = pfsspy.Input(gong_map, nrho, rss)
output = pfsspy.pfss(input)
Finally, using the 3D magnetic field solution we can trace some field lines. In this case a grid of 90 x 180 points equally gridded in theta and phi are chosen and traced from the source surface outwards.
First, set up the tracing seeds
r = const.R_sun
# Number of steps in cos(latitude)
nsteps = 30
lon_1d = np.linspace(0, 2 * np.pi, nsteps * 2 + 1)
lat_1d = np.arcsin(np.linspace(-1, 1, nsteps + 1))
lon, lat = np.meshgrid(lon_1d, lat_1d, indexing='ij')
lon, lat = lon*u.rad, lat*u.rad
seeds = SkyCoord(lon.ravel(), lat.ravel(), r, frame=output.coordinate_frame)
Trace the field lines
print('Tracing field lines...')
tracer = tracing.FortranTracer(max_steps=2000)
field_lines = tracer.trace(seeds, output)
print('Finished tracing field lines')
Plot the result. The to plot is the input magnetogram, and the bottom plot shows a contour map of the the footpoint polarities, which are +/- 1 for open field regions and 0 for closed field regions.
fig = plt.figure()
m = input.map
ax = fig.add_subplot(2, 1, 1, projection=m)
m.plot()
ax.set_title('Input GONG magnetogram')
ax = fig.add_subplot(2, 1, 2)
cmap = mcolor.ListedColormap(['tab:red', 'black', 'tab:blue'])
norm = mcolor.BoundaryNorm([-1.5, -0.5, 0.5, 1.5], ncolors=3)
pols = field_lines.polarities.reshape(2 * nsteps + 1, nsteps + 1).T
ax.contourf(np.rad2deg(lon_1d), np.sin(lat_1d), pols, norm=norm, cmap=cmap)
ax.set_ylabel('sin(latitude)')
ax.set_title('Open (blue/red) and closed (black) field')
ax.set_aspect(0.5 * 360 / 2)
plt.show()
Total running time of the script: ( 0 minutes 0.000 seconds)
Note
Click here to download the full example code
Dipole source solution¶
A simple example showing how to use pfsspy to compute the solution to a dipole source field.
First, import required modules
import astropy.constants as const
import astropy.units as u
from astropy.coordinates import SkyCoord
from astropy.time import Time
import matplotlib.pyplot as plt
import matplotlib.patches as mpatch
import numpy as np
import sunpy.map
import pfsspy
import pfsspy.coords as coords
To start with we need to construct an input for the PFSS model. To do this, first set up a regular 2D grid in (phi, s), where s = cos(theta) and (phi, theta) are the standard spherical coordinate system angular coordinates. In this case the resolution is (360 x 180).
nphi = 360
ns = 180
phi = np.linspace(0, 2 * np.pi, nphi)
s = np.linspace(-1, 1, ns)
s, phi = np.meshgrid(s, phi)
Now we can take the grid and calculate the boundary condition magnetic field.
def dipole_Br(r, s):
return 2 * s / r**3
br = dipole_Br(1, s)
The PFSS solution is calculated on a regular 3D grid in (phi, s, rho), where rho = ln(r), and r is the standard spherical radial coordinate. We need to define the number of rho grid points, and the source surface radius.
nrho = 30
rss = 2.5
From the boundary condition, number of radial grid points, and source surface, we now construct an Input object that stores this information
header = pfsspy.carr_cea_wcs_header(Time('2020-1-1'), br.shape)
input_map = sunpy.map.Map((br.T, header))
input = pfsspy.Input(input_map, nrho, rss)
Using the Input object, plot the input field
m = input.map
fig = plt.figure()
ax = plt.subplot(projection=m)
m.plot()
plt.colorbar()
ax.set_title('Input dipole field')

Out:
Text(0.5, 1.0, 'Input dipole field')
Now calculate the PFSS solution.
output = pfsspy.pfss(input)
Using the Output object we can plot the source surface field, and the polarity inversion line.
ss_br = output.source_surface_br
# Create the figure and axes
fig = plt.figure()
ax = plt.subplot(projection=ss_br)
# Plot the source surface map
ss_br.plot()
# Plot the polarity inversion line
ax.plot_coord(output.source_surface_pils[0])
# Plot formatting
plt.colorbar()
ax.set_title('Source surface magnetic field')

Out:
Text(0.5, 1.0, 'Source surface magnetic field')
Finally, using the 3D magnetic field solution we can trace some field lines. In this case 32 points equally spaced in theta are chosen and traced from the source surface outwards.
fig, ax = plt.subplots()
ax.set_aspect('equal')
# Take 32 start points spaced equally in theta
r = 1.01 * const.R_sun
lon = np.pi / 2 * u.rad
lat = np.linspace(-np.pi / 2, np.pi / 2, 33) * u.rad
seeds = SkyCoord(lon, lat, r, frame=output.coordinate_frame)
tracer = pfsspy.tracing.PythonTracer()
field_lines = tracer.trace(seeds, output)
for field_line in field_lines:
coords = field_line.coords
coords.representation_type = 'cartesian'
color = {0: 'black', -1: 'tab:blue', 1: 'tab:red'}.get(field_line.polarity)
ax.plot(coords.y / const.R_sun,
coords.z / const.R_sun, color=color)
# Add inner and outer boundary circles
ax.add_patch(mpatch.Circle((0, 0), 1, color='k', fill=False))
ax.add_patch(mpatch.Circle((0, 0), input.grid.rss, color='k', linestyle='--',
fill=False))
ax.set_title('PFSS solution for a dipole source field')
plt.show()

Total running time of the script: ( 0 minutes 5.474 seconds)
Note
Click here to download the full example code
Overplotting field lines on AIA maps¶
This example shows how to take a PFSS solution, trace some field lines, and overplot the traced field lines on an AIA 193 map.
First, we import the required modules
from datetime import datetime
import os
import astropy.constants as const
import astropy.units as u
from astropy.coordinates import SkyCoord
import matplotlib.pyplot as plt
import numpy as np
import sunpy.map
import sunpy.io.fits
import pfsspy
import pfsspy.coords as coords
import pfsspy.tracing as tracing
from gong_helpers import get_gong_map
Load a GONG magnetic field map. If ‘gong.fits’ is present in the current directory, just use that, otherwise download a sample GONG map.
gong_fname = get_gong_map()
We can now use SunPy to load the GONG fits file, and extract the magnetic field data.
The mean is subtracted to enforce div(B) = 0 on the solar surface: n.b. it is not obvious this is the correct way to do this, so use the following lines at your own risk!
gong_map = sunpy.map.Map(gong_fname)
# Remove the mean
gong_map = sunpy.map.Map(gong_map.data - np.mean(gong_map.data), gong_map.meta)
Load the corresponding AIA 193 map
if not os.path.exists('AIA20190310.fits'):
import urllib.request
urllib.request.urlretrieve(
'http://jsoc2.stanford.edu/data/aia/synoptic/2019/03/10/H0000/AIA20190310_0000_0193.fits',
'AIA20190310.fits')
aia = sunpy.map.Map('AIA20190310.fits')
dtime = aia.date
The PFSS solution is calculated on a regular 3D grid in (phi, s, rho), where rho = ln(r), and r is the standard spherical radial coordinate. We need to define the number of grid points in rho, and the source surface radius.
nrho = 25
rss = 2.5
From the boundary condition, number of radial grid points, and source
surface, we now construct an Input
object that stores this information
input = pfsspy.Input(gong_map, nrho, rss)
Using the Input
object, plot the input photospheric magnetic field
m = input.map
fig = plt.figure()
ax = plt.subplot(projection=m)
m.plot()
plt.colorbar()
ax.set_title('Input field')

Out:
Text(0.5, 1.0, 'Input field')
We can also plot the AIA map to give an idea of the global picture. There is a nice active region in the top right of the AIA plot, that can also be seen in the top left of the photospheric field plot above.
ax = plt.subplot(1, 1, 1, projection=aia)
aia.plot(ax)

Out:
<matplotlib.image.AxesImage object at 0x7fbe91089748>
Now we construct a 10 x 10 grid of footpoitns to trace some magnetic field lines from.
s, phi = np.meshgrid(np.linspace(0.1, 0.2, 5),
np.deg2rad(np.linspace(55, 65, 5)))
lat = np.arcsin(s) * u.rad
lon = phi * u.rad
seeds = SkyCoord(lon.ravel(), lat.ravel(), 1.01 * const.R_sun,
frame=gong_map.coordinate_frame)
Plot the magnetogram and the seed footpoints The footpoints are centered around the active region metnioned above.
m = input.map
fig = plt.figure()
ax = plt.subplot(projection=m)
m.plot()
plt.colorbar()
ax.plot_coord(seeds, color='black', marker='o', linewidth=0, markersize=2)
ax.set_title('Field line footpoints')
ax.set_ylim(bottom=0)

Out:
(0.0, 179.5)
Compute the PFSS solution from the GONG magnetic field input
output = pfsspy.pfss(input)
Trace field lines from the footpoints defined above.
tracer = tracing.PythonTracer()
flines = tracer.trace(seeds, output)
Plot the input GONG magnetic field map, along with the traced mangetic field lines.
m = input.map
fig = plt.figure()
ax = plt.subplot(projection=m)
m.plot()
plt.colorbar()
for fline in flines:
ax.plot_coord(fline.coords, color='black', linewidth=1)
# ax.set_xlim(55, 65)
# ax.set_ylim(0.1, 0.25)
ax.set_title('Photospheric field and traced field lines')

Out:
Text(0.5, 1.0, 'Photospheric field and traced field lines')
Plot the AIA map, along with the traced magnetic field lines. Inside the loop the field lines are converted to the AIA observer coordinate frame, and then plotted on top of the map.
fig = plt.figure()
ax = plt.subplot(1, 1, 1, projection=aia)
transform = ax.get_transform('world')
aia.plot(ax)
for fline in flines:
ax.plot_coord(fline.coords, alpha=0.8, linewidth=1, color='black')
ax.set_xlim(500, 900)
ax.set_ylim(400, 800)
plt.show()
# sphinx_gallery_thumbnail_number = 5

Total running time of the script: ( 0 minutes 12.455 seconds)
Note
Click here to download the full example code
GONG PFSS extrapolation¶
Calculating PFSS solution for a GONG synoptic magnetic field map.
First, import required modules
import astropy.constants as const
import astropy.units as u
from astropy.coordinates import SkyCoord
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import sunpy.map
import pfsspy
from pfsspy import coords
from pfsspy import tracing
from gong_helpers import get_gong_map
Load a GONG magnetic field map. If ‘gong.fits’ is present in the current directory, just use that, otherwise download a sample GONG map.
gong_fname = get_gong_map()
We can now use SunPy to load the GONG fits file, and extract the magnetic field data.
The mean is subtracted to enforce div(B) = 0 on the solar surface: n.b. it is not obvious this is the correct way to do this, so use the following lines at your own risk!
gong_map = sunpy.map.Map(gong_fname)
# Remove the mean
gong_map = sunpy.map.Map(gong_map.data - np.mean(gong_map.data), gong_map.meta)
The PFSS solution is calculated on a regular 3D grid in (phi, s, rho), where rho = ln(r), and r is the standard spherical radial coordinate. We need to define the number of rho grid points, and the source surface radius.
nrho = 35
rss = 2.5
From the boundary condition, number of radial grid points, and source surface, we now construct an Input object that stores this information
input = pfsspy.Input(gong_map, nrho, rss)
def set_axes_lims(ax):
ax.set_xlim(0, 360)
ax.set_ylim(0, 180)
Using the Input object, plot the input field
m = input.map
fig = plt.figure()
ax = plt.subplot(projection=m)
m.plot()
plt.colorbar()
ax.set_title('Input field')
set_axes_lims(ax)

Now calculate the PFSS solution, and plot the polarity inversion line.
output = pfsspy.pfss(input)
# output.plot_pil(ax)
Using the Output object we can plot the source surface field, and the polarity inversion line.
ss_br = output.source_surface_br
# Create the figure and axes
fig = plt.figure()
ax = plt.subplot(projection=ss_br)
# Plot the source surface map
ss_br.plot()
# Plot the polarity inversion line
ax.plot_coord(output.source_surface_pils[0])
# Plot formatting
plt.colorbar()
ax.set_title('Source surface magnetic field')
set_axes_lims(ax)

Out:
/home/docs/checkouts/readthedocs.org/user_builds/pfsspy/envs/0.5.2/lib/python3.7/site-packages/astropy/wcs/wcs.py:687: FITSFixedWarning: 'datfix' made the change 'Set DATE-REF to '1858-11-17' from MJD-REF'.
FITSFixedWarning)
/home/docs/checkouts/readthedocs.org/user_builds/pfsspy/envs/0.5.2/lib/python3.7/site-packages/astropy/wcs/wcs.py:687: FITSFixedWarning: 'datfix' made the change 'Set DATE-REF to '1858-11-17' from MJD-REF'.
FITSFixedWarning)
/home/docs/checkouts/readthedocs.org/user_builds/pfsspy/envs/0.5.2/lib/python3.7/site-packages/astropy/wcs/wcs.py:687: FITSFixedWarning: 'datfix' made the change 'Set DATE-REF to '1858-11-17' from MJD-REF'.
FITSFixedWarning)
It is also easy to plot the magnetic field at an arbitrary height within the PFSS solution.
# Get the radial magnetic field at a given height
ridx = 15
br = output.bc[0][:, :, ridx]
# Create a sunpy Map object using output WCS
br = sunpy.map.Map(br.T, output.source_surface_br.wcs)
# Get the radial coordinate
r = np.exp(output.grid.rc[ridx])
# Create the figure and axes
fig = plt.figure()
ax = plt.subplot(projection=br)
# Plot the source surface map
br.plot(cmap='RdBu')
# Plot formatting
plt.colorbar()
ax.set_title('$B_{r}$ ' + f'at r={r:.2f}' + '$r_{\\odot}$')
set_axes_lims(ax)

Out:
/home/docs/checkouts/readthedocs.org/user_builds/pfsspy/envs/0.5.2/lib/python3.7/site-packages/astropy/wcs/wcs.py:687: FITSFixedWarning: 'datfix' made the change 'Set DATE-REF to '1858-11-17' from MJD-REF'.
FITSFixedWarning)
Finally, using the 3D magnetic field solution we can trace some field lines. In this case 64 points equally gridded in theta and phi are chosen and traced from the source surface outwards.
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
tracer = tracing.PythonTracer()
r = 1.2 * const.R_sun
lat = np.linspace(-np.pi / 2, np.pi / 2, 8, endpoint=False)
lon = np.linspace(0, 2 * np.pi, 8, endpoint=False)
lat, lon = np.meshgrid(lat, lon, indexing='ij')
lat, lon = lat.ravel() * u.rad, lon.ravel() * u.rad
seeds = SkyCoord(lon, lat, r, frame=output.coordinate_frame)
field_lines = tracer.trace(seeds, output)
for field_line in field_lines:
color = {0: 'black', -1: 'tab:blue', 1: 'tab:red'}.get(field_line.polarity)
coords = field_line.coords
coords.representation_type = 'cartesian'
ax.plot(coords.x / const.R_sun,
coords.y / const.R_sun,
coords.z / const.R_sun,
color=color, linewidth=1)
ax.set_title('PFSS solution')
plt.show()
# sphinx_gallery_thumbnail_number = 4

Total running time of the script: ( 0 minutes 8.623 seconds)
Finding data¶
Examples showing how to find, download, and load magnetograms.
Note
Click here to download the full example code
HMI data¶
How to search for HMI data.
This example shows how to search for, download, and load HMI data, using the
sunpy.net.Fido
interface. HMI data is available via. the Joint Stanford
Operations Center (JSOC), and the radial magnetic field synoptic maps come
in two sizes:
‘hmi.Synoptic_Mr_720s’: 3600 x 1440 in (lon, lat)
‘hmi.mrsynop_small_720s’: 720 x 360 in (lon, lat)
For more information on the maps, see the synoptic maps page on the JSOC site.
First import the required modules
import pfsspy
from sunpy.net import Fido, attrs as a
import sunpy.map
Set up the search.
Note that for SunPy versions earlier than 2.0, a time attribute is needed to do the search, even if (in this case) it isn’t used, as the synoptic maps are labelled by Carrington rotation number instead of time
time = a.Time('2010/01/01', '2010/01/01')
series = a.jsoc.Series('hmi.mrsynop_small_720s')
Do the search. This will return all the maps in the ‘hmi_mrsynop_small_720s series.’
result = Fido.search(time, series)
print(result)
Out:
Results from 1 Provider:
134 Results from the JSOCClient:
T_REC TELESCOP INSTRUME WAVELNTH CAR_ROT
str15 str7 str9 float64 int64
--------------- -------- --------- -------- -------
Invalid KeyLink SDO/HMI HMI_SIDE1 6173.0 2097
Invalid KeyLink SDO/HMI HMI_SIDE1 6173.0 2098
Invalid KeyLink SDO/HMI HMI_SIDE1 6173.0 2099
Invalid KeyLink SDO/HMI HMI_SIDE1 6173.0 2100
Invalid KeyLink SDO/HMI HMI_SIDE1 6173.0 2101
Invalid KeyLink SDO/HMI HMI_SIDE1 6173.0 2102
Invalid KeyLink SDO/HMI HMI_SIDE1 6173.0 2103
Invalid KeyLink SDO/HMI HMI_SIDE1 6173.0 2104
Invalid KeyLink SDO/HMI HMI_SIDE1 6173.0 2105
Invalid KeyLink SDO/HMI HMI_SIDE1 6173.0 2106
... ... ... ... ...
Invalid KeyLink SDO/HMI HMI_SIDE1 6173.0 2221
Invalid KeyLink SDO/HMI HMI_SIDE1 6173.0 2222
Invalid KeyLink SDO/HMI HMI_SIDE1 6173.0 2223
Invalid KeyLink SDO/HMI HMI_SIDE1 6173.0 2224
Invalid KeyLink SDO/HMI HMI_SIDE1 6173.0 2225
Invalid KeyLink SDO/HMI HMI_SIDE1 6173.0 2226
Invalid KeyLink SDO/HMI HMI_SIDE1 6173.0 2227
Invalid KeyLink SDO/HMI HMI_SIDE1 6173.0 2228
Invalid KeyLink SDO/HMI HMI_SIDE1 6173.0 2229
Invalid KeyLink SDO/HMI HMI_SIDE1 6173.0 2230
If we just want to download a specific map, we can specify a Carrington rotation number. In addition, downloading files from JSOC requires a notification email. If you use this code, please replace this email address with your own one, registered here: http://jsoc.stanford.edu/ajax/register_email.html
crot = a.jsoc.PrimeKey('CAR_ROT', 2210)
result = Fido.search(time, series, crot, a.jsoc.Notify("jsoc@cadair.com"))
print(result)
Out:
Results from 1 Provider:
1 Results from the JSOCClient:
T_REC TELESCOP INSTRUME WAVELNTH CAR_ROT
str15 str7 str9 float64 int64
--------------- -------- --------- -------- -------
Invalid KeyLink SDO/HMI HMI_SIDE1 6173.0 2210
Download the files. This downloads files to the default sunpy download directory.
files = Fido.fetch(result)
print(files)
Out:
Export request pending. [id="JSOC_20200527_2024_X_IN", status=2]
Waiting for 0 seconds...
2 URLs found for download. Full request totalling 2MB
Files Downloaded: 0%| | 0/2 [00:00<?, ?file/s]
hmi.mrsynop_small_720s.2210.epts.fits: 0%| | 0.00/1.05M [00:00<?, ?B/s][A[A
hmi.mrsynop_small_720s.2210.synopMr.fits: 0%| | 0.00/1.05M [00:00<?, ?B/s][A
hmi.mrsynop_small_720s.2210.epts.fits: 0%| | 100/1.05M [00:00<24:17, 717B/s][A[A
hmi.mrsynop_small_720s.2210.synopMr.fits: 0%| | 100/1.05M [00:00<24:13, 719B/s][A
hmi.mrsynop_small_720s.2210.epts.fits: 2%|1 | 19.4k/1.05M [00:00<16:43, 1.02kB/s][A[A
hmi.mrsynop_small_720s.2210.synopMr.fits: 2%|1 | 19.4k/1.05M [00:00<16:40, 1.03kB/s][A
hmi.mrsynop_small_720s.2210.epts.fits: 5%|4 | 50.9k/1.05M [00:00<11:22, 1.46kB/s][A[A
hmi.mrsynop_small_720s.2210.synopMr.fits: 5%|4 | 50.9k/1.05M [00:00<11:20, 1.46kB/s][A
hmi.mrsynop_small_720s.2210.epts.fits: 9%|9 | 96.6k/1.05M [00:00<07:36, 2.08kB/s][A[A
hmi.mrsynop_small_720s.2210.synopMr.fits: 9%|9 | 95.1k/1.05M [00:00<07:36, 2.08kB/s][A
hmi.mrsynop_small_720s.2210.epts.fits: 15%|#5 | 159k/1.05M [00:00<04:58, 2.96kB/s] [A[A
hmi.mrsynop_small_720s.2210.synopMr.fits: 15%|#4 | 157k/1.05M [00:00<04:59, 2.97kB/s] [A
hmi.mrsynop_small_720s.2210.epts.fits: 24%|##3 | 246k/1.05M [00:00<03:09, 4.23kB/s][A[A
hmi.mrsynop_small_720s.2210.synopMr.fits: 23%|##2 | 239k/1.05M [00:00<03:10, 4.24kB/s][A
hmi.mrsynop_small_720s.2210.epts.fits: 34%|###4 | 358k/1.05M [00:00<01:54, 6.02kB/s][A[A
hmi.mrsynop_small_720s.2210.synopMr.fits: 34%|###3 | 352k/1.05M [00:00<01:54, 6.04kB/s][A
hmi.mrsynop_small_720s.2210.epts.fits: 49%|####8 | 509k/1.05M [00:01<01:02, 8.59kB/s][A[A
hmi.mrsynop_small_720s.2210.synopMr.fits: 49%|####8 | 509k/1.05M [00:01<01:02, 8.61kB/s][A
hmi.mrsynop_small_720s.2210.epts.fits: 66%|######5 | 689k/1.05M [00:01<00:29, 12.2kB/s][A[A
hmi.mrsynop_small_720s.2210.synopMr.fits: 67%|######6 | 696k/1.05M [00:01<00:28, 12.3kB/s][A
hmi.mrsynop_small_720s.2210.epts.fits: 90%|######### | 942k/1.05M [00:01<00:05, 17.4kB/s][A[A
hmi.mrsynop_small_720s.2210.synopMr.fits: 87%|########7 | 913k/1.05M [00:01<00:07, 17.5kB/s][A
[A[A
Files Downloaded: 50%|##### | 1/2 [00:01<00:01, 1.56s/file]
[A
Files Downloaded: 100%|##########| 2/2 [00:01<00:00, 1.27file/s]
['/home/docs/sunpy/data/hmi.mrsynop_small_720s.2210.epts.fits', '/home/docs/sunpy/data/hmi.mrsynop_small_720s.2210.synopMr.fits']
Read in a file. This will read in the first file downloaded to a sunpy Map object.
hmi_map = sunpy.map.Map(files[0])
print(hmi_map)
Out:
[[ 0. 0. 0. ... 0. 0. 0.]
[15. 15. 15. ... 0. 0. 0.]
[20. 20. 20. ... 10. 10. 10.]
...
[20. 20. 20. ... 20. 20. 20.]
[20. 20. 20. ... 20. 20. 20.]
[10. 10. 10. ... 20. 20. 20.]]
Total running time of the script: ( 0 minutes 16.321 seconds)
Note
Click here to download the full example code
ADAPT helper functions¶
import os
def example_adapt_map():
import urllib.request
urllib.request.urlretrieve(
'https://gong.nso.edu/adapt/maps/gong/2020/adapt40311_03k012_202001010000_i00005600n1.fts.gz',
'adapt20200101.fts.gz'
)
if not os.path.exists('adapt20200101.fts'):
import gzip
with gzip.open('adapt20200101.fts.gz', 'rb') as f:
with open('adapt20200101.fts', 'wb') as g:
g.write(f.read())
return 'adapt20200101.fts'
Total running time of the script: ( 0 minutes 0.000 seconds)
Note
Click here to download the full example code
Parsing ADAPT Ensemble .fits files¶
Parse an ADAPT FITS file into a sunpy.map.MapSequence
.
Necessary imports
from adapt_helpers import example_adapt_map
import sunpy.map,sunpy.io
import matplotlib.pyplot as plt, matplotlib.gridspec as gridspec
Load an example ADAPT fits file, utility stored in adapt_helpers.py
adapt_fname = example_adapt_map()
ADAPT synoptic magnetograms contain 12 realizations of synoptic magnetograms output as a result of varying model assumptions. See [here](https://www.swpc.noaa.gov/sites/default/files/images/u33/SWW_2012_Talk_04_27_2012_Arge.pdf))
Because the fits data is 3D, it cannot be passed directly to sunpy.map.Map
,
because this will take the first slice only and the other realizations are
lost. We want to end up with a sunpy.map.MapSequence
containing all these
realiations as individual maps. These maps can then be individually accessed
and PFSS solutions generated from them.
We first read in the fits file using sunpy.io
:
adapt_fits = sunpy.io.fits.read(adapt_fname)
adapt_fits
is a list of HDPair
objects. The first of these contains the
12 realizations data and a header with sufficient information to build the
MapSequence
. We unpack this HDPair
into a list of (data,header)
tuples
where data
are the different adapt realizations.
data_header_pairs = [(map_slice,adapt_fits[0].header)
for map_slice in adapt_fits[0].data
]
Next, pass this list of tuples as the argument to sunpy.map.Map to create the map sequence :
adaptMapSequence = sunpy.map.Map(data_header_pairs,sequence=True)
adapt_map_sequence
is now a list of our individual adapt realizations. Note
the peek()
and plot()
methods of MapSequence
returns instances of
sunpy.visualization.MapSequenceAnimator
and
matplotlib.animation.FuncAnimation1
instances. Here, we generate a static
plot accessing the individual maps in turn :
fig = plt.figure(figsize=(7,8))
gs = gridspec.GridSpec(4,3,figure=fig)
for ii,aMap in enumerate(adaptMapSequence) :
ax=fig.add_subplot(gs[ii],projection=aMap)
aMap.plot(axes=ax,cmap='bwr',vmin=-2,vmax=2,title=f"Realization {1+ii:02d}")
plt.tight_layout(pad=5,h_pad=2)
plt.show()
Total running time of the script: ( 0 minutes 0.000 seconds)
pfsspy information¶
Examples showing how the internals of pfsspy work.
Note
Click here to download the full example code
pfsspy magnetic field grid¶
A plot of the grid corners, from which the magnetic field values are taken when tracing magnetic field lines.
Notice how the spacing becomes larger at the poles, and closer to the source surface. This is because the grid is equally spaced in \(\cos \theta\) and \(\log r\).
import numpy as np
import matplotlib.pyplot as plt
from pfsspy import Grid
Define the grid spacings
ns = 15
nphi = 360
nr = 10
rss = 2.5
Create the grid
grid = Grid(ns, nphi, nr, rss)
Get the grid edges, and transform to r and theta coordinates
r_edges = np.exp(grid.rg)
theta_edges = np.arccos(grid.sg)
The corners of the grid are where lines of constant (r, theta) intersect, so meshgrid these together to get all the grid corners.
r_grid_points, theta_grid_points = np.meshgrid(r_edges, theta_edges)
Plot the resulting grid corners
fig = plt.figure()
ax = fig.add_subplot(projection='polar')
ax.scatter(theta_grid_points, r_grid_points)
ax.scatter(theta_grid_points + np.pi, r_grid_points, color='C0')
ax.set_ylim(0, 1.1 * rss)
ax.set_theta_zero_location('N')
ax.set_yticks([1, 1.5, 2, 2.5], minor=False)
ax.set_title('$n_{r}$ = ' f'{nr}, ' r'$n_{\theta}$ = ' f'{ns}')
plt.show()

Total running time of the script: ( 0 minutes 0.181 seconds)
Note
Click here to download the full example code
Tracer performance¶
A quick script to compare the performance of the python and fortran tracers.
import timeit
import astropy.units as u
import astropy.coordinates
import numpy as np
import matplotlib.pyplot as plt
import sunpy.map
import pfsspy
Create a dipole map
ntheta = 180
nphi = 360
nr = 50
rss = 2.5
phi = np.linspace(0, 2 * np.pi, nphi)
theta = np.linspace(-np.pi / 2, np.pi / 2, ntheta)
theta, phi = np.meshgrid(theta, phi)
def dipole_Br(r, theta):
return 2 * np.sin(theta) / r**3
br = dipole_Br(1, theta).T
br = sunpy.map.Map(br, pfsspy.carr_cea_wcs_header('2010-01-01', br.shape))
pfss_input = pfsspy.Input(br, nr, rss)
pfss_output = pfsspy.pfss(pfss_input)
print('Computed PFSS solution')
Trace some field lines
seed0 = np.atleast_2d(np.array([1, 1, 0]))
tracers = [pfsspy.tracing.PythonTracer(),
pfsspy.tracing.FortranTracer()]
nseeds = 2**np.arange(14)
times = [[], []]
for nseed in nseeds:
print(nseed)
seeds = np.repeat(seed0, nseed, axis=0)
r, lat, lon = pfsspy.coords.cart2sph(seeds[:, 0], seeds[:, 1], seeds[:, 2])
r = r * astropy.constants.R_sun
lat = (lat - np.pi / 2) * u.rad
lon = lon * u.rad
seeds = astropy.coordinates.SkyCoord(lon, lat, r, frame=pfss_output.coordinate_frame)
for i, tracer in enumerate(tracers):
if nseed > 64 and i == 0:
continue
t = timeit.timeit(lambda: tracer.trace(seeds, pfss_output), number=1)
times[i].append(t)
Plot the results
fig, ax = plt.subplots()
ax.scatter(nseeds[1:len(times[0])], times[0][1:], label='python')
ax.scatter(nseeds[1:], times[1][1:], label='fortran')
pydt = (times[0][4] - times[0][3]) / (nseeds[4] - nseeds[3])
ax.plot([1, 1e5], [pydt, 1e5 * pydt])
fort0 = times[1][1]
fordt = (times[1][-1] - times[1][-2]) / (nseeds[-1] - nseeds[-2])
ax.plot(np.logspace(0, 5, 100), fort0 + fordt * np.logspace(0, 5, 100))
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_xlabel('Number of seeds')
ax.set_ylabel('Seconds')
ax.axvline(180 * 360, color='k', linestyle='--', label='180x360 seed points')
ax.legend()
plt.show()
This shows the results of the above script, run on a 2014 MacBook pro with a 2.6 GHz Dual-Core Intel Core i5:

Total running time of the script: ( 0 minutes 0.000 seconds)
for the helper modules (behind the scense!) see
Helper modules¶
pfsspy.coords Module¶
Helper functions for coordinate transformations used in the PFSS domain.
The PFSS solution is calculated on a “strumfric” grid defined by
\(\rho = \log (r)\)
\(s = \cos (\theta )\)
\(\phi\)
where \(r, \theta, \phi\) are spherical cooridnates that have ranges
\(1 < r < r_{ss}\)
\(0 < \theta < \pi\)
\(0 < \phi < 2\pi\)
The transformation between cartesian coordinates used by the tracer and the above coordinates is given by
\(x = r\sin (\theta) \cos (\phi)\)
\(y = r\sin (\theta) \sin (\phi)\)
\(z = r \cos (\theta)\)
Functions¶
|
Convert cartesian coordinates to spherical coordinates. |
|
Convert cartesian coordinates to strumfric coordinates. |
|
Convert spherical coordinates to cartesian coordinates. |
|
Convert strumfric coordinates to cartesian coordinates. |
and for a quick reference guide to synoptic map FITS conventions see
Synoptic map FITS conventions¶
FITS is the most common filetype used for the storing of solar images. On this page the FITS metadata conventions for synoptic maps are collected. All of this information can be found in, and is taken from, “Coordinate systems for solar image data (Thompson, 2005)”.
Keyword |
Output |
CRPIXn |
Reference pixel to subtract along axis n. Counts from 1 to N. Integer values refer to the centre of the pixel. |
CRVALn |
Coordinate value of the reference pixel along axis n. |
CDELTn |
Pixel spacing along axis n. |
CTYPEn |
Coordinate axis label for axis n. |
PVi_m |
Additional parameters needed for some coordinate systems. |
Note that CROTAn is ignored in this short guide.
Cylindrical equal area projection¶
In this projection, the latitude pixels are equally spaced in sin(latitude). The reference pixel has to be on the equator, to facilitate alignment with the solar rotation axis.
CDELT2 is set to 180/pi times the pixel spacing in sin(latitude).
CTYPE1 is either ‘HGLN-CEA’ or ‘CRLN-CEA’.
CTYPE2 is either ‘HGLT-CEA’ or ‘CRLT-CEA’.
PVi_1 is set to 1.
LONPOLE is 0.
The abbreviations are “Heliographic Longitude - Cylindrical Equal Area” etc. If the system is heliographic the observer must also be defined in the metadata.